Final Words

ASUS mini-ITX boards always have the potential for greatness within them.  A strong background in hardware design with support and software to match is part of ASUS’ strategy to be number one when it comes to motherboards on the global scale.

The F1A75-I Deluxe was sent to me unexpectedly along with another board I had requested, but I chose to review this one first, as I am a big fan of the mini-ITX format.  If we look at the design of the board and the low profile, ASUS is making a push here to the small form factor Llano arrangements niche with aplomb. The styling works, with everything laid out neatly, especially the wifi module and connectors to the back panel.  I would have liked a couple more fan headers, but ASUS are clearly aiming at the lower powered Llano processors with this design – strap on a low powered CPU and a low profile cooler, some low profile memory and stick it in a case for maximum effect. 

The BIOS as far as I can tell is rock solid, though overclocking leads a little to be desired, with the board not getting into Windows beyond 107 MHz in AHCI mode.  This again would suggest more towards a low powered setup, especially with extra energy saving technologies like the ASUS EPU.  However in IDE mode, the board would happily run at 140 MHz (3640 MHz total), leading me to suggest that if AHCI is not a concern, then IDE mode would be the way to go. 

The software works for the most part, and you cannot fault the fan controls.  I would have liked more in the box, especially as I do not find the extra wireless controller appealing in terms of ergonomics or functionality, but the wireless antenna work for me, especially if you have somewhere to magnetize them to (preferably not a mechanical hard drive!).

Performance wise, we can see the difference extra memory speed makes – when comparing the A8-3850 at DDR3-1333 and A6-3650 at DDR3-1866, where the Sorenson Squeeze test comes in over 700 seconds faster.  However, there are no big surprises here in most of the benchmarks.  Only the DPC Latency test gives cause for concern, when AI Suite II was running.  This will not affect most users at all, and I would hazard at a guess that those who it would affect have a larger budget for a more powerful platform anyway.

As I was testing this board with a pre-release BIOS, it stands to assume that ASUS may iron out some of these discrepancies by the time the board comes to market. ASUS will offer the F1A75-I Deluxe with a three year warranty, and I am told should be released with at $145, indicating a $30 premium over the full ATX size ASUS F1A75-V Pro.

Gaming Benchmarks
Comments Locked

51 Comments

View All Comments

  • StormyParis - Saturday, October 1, 2011 - link

    Mobile Llanos use a different socket I think ? For cheap mini-itx nettops, I'd rather have that, especially because desktop llanos need 65W and up, which is a lot.
  • Taft12 - Sunday, October 2, 2011 - link

    At idle, these desktop parts draw about the same amount of power as laptop parts. Also, please observe the difference between TDP and actual system power draw
  • CharonPDX - Monday, October 3, 2011 - link

    For cheap systems, you don't want to use more expensive mobile chips. A little extra heat on the desktop is possible to exhaust more easily.
  • Z Throckmorton - Saturday, October 1, 2011 - link

    Thank you very much for the very informative review, Ian. I've been waiting way too long for ITX FM1 boards to appear, and there's finally some proliferation in the field. Hopefully the field will continue to widen both in terms of APUs and boards.

    Any word on why OC'ing in AHCI is abysmal and in IDE, very impressive? Is this an issue with this board in particular, or this chipset in general?
  • Taft12 - Sunday, October 2, 2011 - link

    I'm with you on the need for ITX FM1 boards. I'd argue that there's really no need for *ANY* FM1 system to be larger than micro-ATX (and only then for the benefit of 4 memory slots). If you need more video processing power than Llano integrated, you should be buying AM3+
  • mariush - Saturday, October 1, 2011 - link

    Read all the article...

    In my opinion that bit about being unable to overclock shouldn't be on the first page, it may put off the reader and stop him from reading further.

    On the page where you actually discuss about overclocking, you should remind people that it's a beta BIOS and just maybe they won't have to switch to IDE mode in final versions of the motherboard to get good overclocking.

    Maybe it's just me but I would have appreciated a test showing the power consumption of the system with just plain 2 GB of memory, with wireless disabled and a simple budget ssd drive or a 5900 rpm drive - probably the configuration people would use for htpc or for an office machine.

    I see the system uses 122 watts of power when playing Metro but how about the case when there's no additional video card - would I be able to run it from let's say a 120w pico-psu combined with a 19v laptop brick?

    It would also be nice to see how low the voltage of the CPU can go and still keep the system stable, just in case someone would like to make the system as cool as possible and make it silent

    You also say the power is measured at the wall but you're using a 1000w power supply - this is ridiculous.
    The Silverstone Strider Plus 1000w is reported to have only about 80.8 efficiency at 100 watts, see jonnyguru.com/modules.php?name=NDReviews&op=Story2&reid=180
  • just4U - Saturday, October 1, 2011 - link

    As an enthusiast.. this would likely go into a small formfactor for the TV.. I don't even see why Overclocking would be a deal breaker at all.
  • mdk777 - Saturday, October 1, 2011 - link

    "The Silverstone Strider Plus 1000w is reported to have only about 80.8 efficiency at 100 watts, see jonnyguru.com/modules.php?name=NDReviews&op=Story2&reid=180 "

    correct: It is really much worse for the idle !

    Most likely at half this wattage the efficiency is closer to 70 %

    Hence that 50 watt idle at the wall translates into 35 watts direct.

    With a proper 400 watt gold rated PSU you would pull 38 to 39 watts.

    Hence a horrible reporting error of what ? over 24%

    What a joke. Why didn't you just use a 1500 watt bronze unit to try and skew the results even more.????
  • Arnulf - Sunday, October 2, 2011 - link

    Yup, undervolting would be interesting, not the silly 1.5V on 32 nm chip.
  • tecknurd - Sunday, October 2, 2011 - link

    If the computer consumes 122 watts and the power supply rating is 120 watts, this is will hurt the power supply trying to use more power than the power supply is rated for. It is best to select a power supply that has more power than the device is trying to use. There are 160 watt pico power supply units that will be better suited for the setup. Using a pico power supply is best to use with lower power processors like an A6-3600 or A4-3400.

    Yes, using a 1000 watt power supply for this setup is over kill. Probably this is the power supply that author has in their junk box. Sure jonnyguru.com might be good, but where is the ripple voltage or quality of the power that the Silverstone power supply is providing at the low power. Efficiency is part of a good power supply, but the quality of the power matters more when caring for stability of the computer.

    Increasing the voltage over than the stock voltage of the processor can hurt the processor. Some motherboards may do this already and increasing voltage just adds more problems. Use a multimeter to check the voltage. If you do not know what you are doing where to place the probes for the multimeter, just do not do it.

Log in

Don't have an account? Sign up now