System Performance: Miscellaneous Workloads

Standardized benchmarks such as UL's PCMark 10 and BAPCo's SYSmark take a holistic view of the system and process a wide range of workloads to arrive at a single score. Some systems are required to excel at specific tasks - so it is often helpful to see how a computer performs in specific scenarios such as rendering, transcoding, JavaScript execution (web browsing), etc. This section presents focused benchmark numbers for specific application scenarios.

3D Rendering - CINEBENCH R23

We use CINEBENCH R23 for 3D rendering evaluation. R23 provides two benchmark modes - single threaded and multi-threaded. Evaluation of different PC configurations in both supported modes provided us the following results.

3D Rendering - CINEBENCH R23 - Single Thread

3D Rendering - CINEBENCH R23 - Multiple Threads

It appears that enabling ECC has negligible effect on rendering performance. In the single-threaded case, the 28W PL1 Core i7-1360P in the new system performs roughly on par with the 40W PL1 Core i7-1260P in the Wall Street Canyon NUC. However, the lagging PL1 is a liability in the multi-threaded case, allowing both the Wall Street Canyon NUC and the 4x4 BOX-5800U to take a huge lead.

Transcoding: Handbrake 1.5.1

Handbrake is one of the most user-friendly open source transcoding front-ends in the market. It allows users to opt for either software-based higher quality processing or hardware-based fast processing in their transcoding jobs. Our new test suite uses the 'Tears of Steel' 4K AVC video as input and transcodes it with a quality setting of 19 to create a 720p AVC stream and a 1080p HEVC stream.

Transcoding - x264

Transcoding - x265_10bit

The relative ordering seen in the Cinebench multi-threading case is also seen in the case of x264 and x265 encoding for the same reason. The 28W PL1 is a downer for long-running tasks in the NUCS BOX-1360P/D4.

Transcoding - QuickSync H.264

Transcoding - QuickSync H.265 10bit

In the QuickSync case, which is purely a reflection of the iGPU clock speeds, the Wall Street Canyon NUC with higher PL1 is able to maintain faster clocks compared to the NUCS BOX, despite the latter having higher iGPU speeds on paper. Enabling ECC causes the frame rate to slip, only to be expected based on previous results for GPU-heavy benchmarks.

Archiving: 7-Zip 21.7

The 7-Zip benchmark is carried over from our previous test suite with an update to the latest version of the open source compression / decompression software.

7-Zip Compression Rate

7-Zip Decompression Rate

Higher power budgets and core counts matter in this test - so, the trend observed in the rendering and transcoding tests hold true here. ECC seems to negatively impact the compression rate, possibly due to the triggering of a large number of unaligned accesses to the external memory.

Web Browsing: JetStream, Speedometer, and Principled Technologies WebXPRT4

Web browser-based workloads have emerged as a major component of the typical home and business PC usage scenarios. For headless systems, many applications based on JavaScript are becoming relevant too. In order to evaluate systems for their JavaScript execution efficiency, we are carrying over the browser-focused benchmarks from the WebKit developers used in our notebook reviews. Hosted at BrowserBench, JetStream 2.0 benchmarks JavaScript and WebAssembly performance, while Speedometer measures web application responsiveness.

BrowserBench - Jetstream 2.0

BrowserBench - Speedometer 2.0

From a real-life workload perspective, we also process WebXPRT4 from Principled Technologies. WebXPRT4 benchmarks the performance of some popular JavaScript libraries that are widely used in websites.

Principled Technologies WebXPRT4

Single-threaded performance matters heavily in browser benchmarks. Here, the improvements in Raptor Lake-P come to fore. Even with ECC enabled, the NUCS BOX system is able to surpass the performance of the Wall Street Canyon with a higher PL1.

Application Startup: GIMP 2.10.30

A new addition to our systems test suite is AppTimer - a benchmark that loads up a program and determines how long it takes for it to accept user inputs. We use GIMP 2.10.30 with a 50MB multi-layered xcf file as input. What we test here is the first run as well as the cached run - normally on the first time a user loads the GIMP package from a fresh install, the system has to configure a few dozen files that remain optimized on subsequent opening. For our test we delete those configured optimized files in order to force a fresh load every second time the software is run.

AppTimer: GIMP 2.10.30 Startup

The 'cached start' situation is a win for the NUCS BOX, but the system suffers in the 'cold start' scenario. Based on the relative ordering of the system, the processor architecture generation and PL1 configuration appear to be the likely affecting factors.

System Performance: UL and BAPCo Benchmarks GPU Performance: Synthetic Benchmarks
Comments Locked

30 Comments

View All Comments

  • drajitshnew - Sunday, January 29, 2023 - link

    The in band ECC is an absolutely brilliant idea for systems with 64 GB or more. It is unfortunate that windows does not support it.
  • Samus - Sunday, January 29, 2023 - link

    My understanding is this doesn't need support at the software level. This is still "hardware ECC" and OS-independent.
  • Samus - Sunday, January 29, 2023 - link

    Oh, I see what you are saying. About how Windows will handle an error. In AT's memtest run the test triggered a stop interrupt presumably as it didn't know how to handle the error. I see what you are getting at with Windows.
  • bernstein - Monday, January 30, 2023 - link

    it's more likely, that chrome mandates ecc support, while with windows intel pushes ecc as $$$ feature
  • sjkpublic@gmail.com - Monday, February 13, 2023 - link

    This competes with laptops. Please expand on why ECC is coming up?
  • mode_13h - Tuesday, February 14, 2023 - link

    > Please expand on why ECC is coming up?

    This is sold as an industrial mini-PC. For something like that, reliability is key. Memory errors are one potential source of reliability problems, and ECC is an effective measure to compensate (short-term) and flag for replacement (long-term) any defective memory modules or boards.

    The lore behind ECC is that it protects against cosmic rays, but I've only personally seen ECC errors that seem tied to flaky or failing hardware. It's worthwhile even for that purpose, alone.
  • TLindgren - Sunday, January 29, 2023 - link

    It needs to be noted that SECDED over 512 bit is FAR less powerfull in handling errors than SECDED over 64-bit like regular ECC (or SECDED over 32-bit using DDR5 ECC sticks). They could have instead emulated the SECDED over each 64-bit chunk but then the extra reserved memory would have needed to be 8GB instead of 2GB, and the performance penalty likely would have been sigificantly worse.
    SECDED means it's guaranteed to correct one incorrect bit (SEC) and detect two incorrect bits (DED), no warranties for what happen with more incorrect bits but there's a decent statistical chance it'll detect them (but no chance it'll fix them).
    Obviously getting two or even three+ faulty bits in the same "group" is far more likely over 512-bit compared to 64-bit, in fact it's my understanding that it'll likely happen most of the time given how memory sticks are constructed!
    It's still useful because it'll detect a certain percentage of the multi-bit error so you will often? get told that you that you have faulty memory (except this doesn't seem to work) before things crash which means you know you need to fix the hardware, but the "correct bits" part is unlikely to save you because at least some of the time it'll get multiple wrong bits in the burst. I suspect they would have been better of with just giving up on correcting and aiming for "detect as many bit errors as we can" (probably 3-4 guaranteed bit detected with the 16-bit of extra data per 512bit they choose).
    It's definitely better than no ECC *if* the software support gets improved a bit, but is in no way comparable to "real" ECC. OTOH, it's not priced as that either but it needs to be pointed out because some people will sell it as if it is.
  • ganeshts - Monday, January 30, 2023 - link

    Taken standalone, you arguments are completely sound.

    However, in the bigger picture, you should note that newer memory technologies include link ECC to protect the high-speed communication link between the SoC and the external memory, AND, the DRAM DIMMs themselves implement transparent ECC for the stored data.

    Overall, even mission-critical requirements like ASIL / ISO26262 (for automotive safety) can be met with the requisite FIT (failure-in-time) rate using SECDED protection for 512-bit blocks *assuming those other protection mechanisms are also in place*.

    In-band ECC is also used on Tegra for such embedded applications [ https://twitter.com/never_released/status/13559704... ; I can't seem to dig up the original documentation, but remember this was heavily discussed when the Tegra feature was made public ].
  • ganeshts - Monday, January 30, 2023 - link

    (Correction: DRAM DIMMs -> The memory chips)
  • mode_13h - Tuesday, February 14, 2023 - link

    > you should note that newer memory technologies include link ECC to protect the high-speed communication link between the SoC and the external memory

    Are you saying the system you reviewed also supports traditional out-of-band ECC? Why wasn't that mentioned in the review? If not, then your point would seem to be moot.

    I also don't see the point of using in-band ECC atop OOB ECC. Anything that OOB ECC can't correct doesn't seem like it's going to be correctable by in-band ECC.

Log in

Don't have an account? Sign up now